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Executive Summary: Brief summary of deliverable.  
Climate change is affecting the distribution and abundance of marine fishes and 
invertebrates. Bioclimate envelope approaches have been used to predict changes in 
the distribution of multiple species on large spatial scales but presently do not account 
for the effects of intra- and inter-specific competition for resources among species on 
the rate and extent of redistribution. In this paper, we develop and test a modelling 
approach that combines a species-based dynamic bioclimate envelope model with a 
size-based model to predict the effects of competition for resources on redistribution. 
Model predictions for 1970 to 2004 were computed using outputs from two different 
model systems applied to the North Atlantic basin: the NOAA’s Geophysical Fluid 
Dynamic Laboratory ESM2.1 model (GFDL) and the European Regional Seas 
Ecosystem Model (ERSEM). The results were challenged with data describing trends 
and variability in the abundance of 24 of the most abundant fishes in the North 
Atlantic.  The results show that considering species interactions in the model 
increases the goodness-of-fit with data by 3.7% and 0.6% using GFDL and ERSEM 
outputs, respectively. In addition, the projected rate of latitudinal shift of pelagic 
species is slower when considering interactions between species. Our approach 
addresses a recognised gap in bioclimate envelope models for modelling considering 
climate change, and has the advantage that it can be applied on ecosystem, sea-
basin and global scales without detailed information on dietary interactions among 
species. 
 
Relevance to the project & potential policy impact: 
The developed model integrates a species based model (bioclimate envelope model) 
and a size spectrum model in order to incorporate a mechanism of competition 
between fish species and invertebrates for resources. The developed model uses a 
bioclimate envelope model to predict the occupation of each species in the size 
spectrum. Parts of the size spectrum that are ‘over-occupied’ or ‘under-occupied’’ are 
identified using the size spectrum model and using previous species abundance and 
habitat suitability the resources are allocated to the species. This means that by using 
the size spectrum theory the model is able to suggest a scenario where multiple 
species interacts, even if some of these interactions has not been quantified or new 
interactions occurs. Therefore, the model provides an important alternative scenario 
where interactions between a large number of species are considered under climate 
change. As an example, the model with interactions predicts a slower latitudinal shift 
of pelagic species in relation to the model without interactions. However, to the best of 
our knowledge there is still no study based on observational data that confirms or 
denies this result.    
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Report: 
 

Introduction 
Climate change is expected to increasingly affect ocean conditions, including 
temperature, salinity, ice coverage, currents, oxygen level, acidity, and consequently 
distribution, productivity and abundance of marine species, including  fishery 
resources (Behrenfeld et al. 2006; Brander 2007; Perry et al. 2005; Pörtner 2010; 
Simpson et al. 2011). Over a range of greenhouse gas emission scenarios (IPCC 
2007), changes in the marine environment are expected to be more rapid in the 21st 
century with implications for dependent communities and industries (Roessig et al. 
2004; Cheung et al. 2012; Lam et al. 2012; Merino et al. 2012). Ecological interactions 
in marine ecosystems are complex, making it difficult to extrapolate from studies of 
individuals and populations to community or ecosystem level (Walther et al. 2002. 
Nature 416). It is also known that these interactions can result in additive, antagonistic 
and synergistic responses to climate and fishing forcing (e.g. Griffith et al. 2011. 
Global Change Biol.). 
 
A range of modelling approaches has been developed to predict the potential effects 
of future climate change on species distributions and abundance (Stock et al. 2011). 
One class of models, species-based bioclimate envelope models, have been used to 
predict redistribution of both terrestrial and aquatic species (Pearson and Dawson 
2003, Jones et al. 2012). The Dynamic Bioclimate Envelope Model (DBEM) developed 
by Cheung et al. (2008, 2009, 2011) projects changes in marine species distribution, 
abundance and body size with explicit consideration of population dynamics, dispersal 
(larval and adult) and ecophysiology (Cheung et al. 2008, 2009, 2011, 2012). 
Projections suggest that there will be a high rate of species invasions in high-latitude 
regions and a potential high rate of local extinction in the tropics and semi-enclosed 
seas in the 21st century under a range of climate change scenarios (Cheung et al. 
2009).  Moreover, as a result of predicted changes in range and primary productivity, 
Cheung et al. (2010) project that maximum catch potential of exploited species is 
expected to generally decrease in the tropics and to rise in high latitudes under 
scenarios of moderate to high levels of greenhouse gas emission. Consideration of 
the effects of ocean de-oxygenation and ocean acidification may result in further 
decreases in projected catch, despite considerable uncertainties (Cheung et al. 2011).  
However, these projections do not account for the effects of species interactions on 
redistribution and abundance, which introduces a source of structural uncertainty 
(Cheung et al. 2010).  
 
Rates of primary production and transfer efficiency influence production and biomass 
along and at the top of ecological food webs. Size spectrum theory accounts for 
energy transfer from primary producers to animals of progressively larger body size 
and are an alternative to describe changes in biomass and production with body size 
(Sheldon et al., 1977; Dickie et al., 1987). Size spectrum theory has been developed 
and applied to predict potential biomass, production and size structure of fish in the 
world’s oceans from primary production (Jennings et al. 2008), and to the responses 
of fish communities to fishing and climate change (Blanchard et al. 2011). These size 
spectrum models are not resolved taxonomically, and this limits their value in 
assessing climate change implications for fisheries, as the species composition as well 
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as the quantity of potential landings is an important consideration for the fishing 
industry and management agencies. 
 
Here, we combine the strengths of the DBEM (i.e., focus on identified species) and the 
size spectrum model (i.e., focus on trophic interactions) to predict spatial and temporal 
changes in species abundance and distribution in response to predicted future 
changes in temperature and primary production. Forty-nine of the most abundant and 
commercially important marine fishes and invertebrates in the North Atlantic, here 
defined as coming from Food and Agriculture Organization (FAO) statistical area 27, 
are included. The size spectrum is used to determine resource limits in a particular 
geographical area of the ocean and these limits, along with habitat suitability for a 
given species, determine the biomass of that species that can be supported in this 
area.  
 
Methods 
A modelling approach that integrates the species-based DBEM model with the size 
spectrum approach, hereafter called size-spectrum DBEM (SS-DBEM) was 
developed. The SS-DBEM: (1) estimates potential biomass supported by the system, 
(2) predicts habitat suitability and (3) models competition. Predictions from the SS-
DBEM are then compared with a DBEM model that does not incorporate species 
interactions (NSI-DBEM, where NSI denotes no species interactions). 
 
Potential biomass supported at each body size class 
The size-spectrum is described as a log-log relationship between abundance and 
body size. The slope and height of the spectrum are determined by the energy transfer 
efficiency of the system as well as its primary production defining the maximum total 
abundance of individuals from all species that can be supported in any defined body 
size class. 
 
Since predator-prey mass ratios and transfer efficiencies in marine food chains do not 
depend on the mean rate of primary production or mean temperature, less energy is 
transferred to consumers of a given body size when food webs are supported by 
smaller primary producers (Barnes et al. 2010). Much of the variation in the body size 
distribution of primary producers depends on the absolute rate of primary production, 
with picoplankton, the smallest phytoplankton, dominating when primary production is 
low (Agawin et al. 2000) and the mid-point size of phytoplankton decreasing with 
decreasing rates of primary production (Barnes et al. 2011). To account for this, the 
position of the median body mass class for phytoplankton was calculated as: 
 

                         (1) 
                                                     
where Ps is the predicted contribution of picophytoplankton net production to total Net 
Primary Production (PP) as calculated using the empirical equation 
 

                                                             (2) 
                
derived from the data of Agawin et al. (2000) by Jennings et al. (2008).  
Once the median body mass class of phytoplankton was defined, we calculated the 
consumer biomass at body size following the methods described in Jennings et al. 
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(2008). We adopted the same assumptions about predator-prey size preferences and 
transfer efficiency as in Jennings et al. (2008), but discretized the spectrum using a 
log2 series of body mass from 21 to 219g.  
 
Habitat suitability 

The development of the dynamic bioclimate envelope model within the SS-DBEM was 
based on the approach of Cheung et al. (2008a, 2008b, 2009, 2011, 2012). The NSI-
DBEM defines the relative preferences of the modelled species for temperature and 
other environmental variable based on the relationship between the current 
distributions and gridded environmental data. The current (representing 1970 – 2000) 
distribution of relative abundance of the modelled marine species on a ½ x ½ degree 
latitude-longitude grid map of the world ocean, are predicted using the Sea Around Us 
project algorithm (Close et al. 2006; Jones et al. 2012 for details).  
 
Environmental variables incorporated into the NSI-DBEM include sea surface 
temperature, sea bottom temperature, coastal upwelling, salinity, sea-ice extent and 
habitat type (Cheung et al. 2011). First, NSI-DBEM calculates changes in growth and 
other life history traits in response to changes in temperature and oxygen 
concentration based on algorithms derived from growth and metabolic functions and 
empirical equations (Cheung et al. 2011, 2012). Second, NSI-DBEM predicts size-
frequency distributions for each species in each spatial cell using a size-structured ‘per 
recruit’ model. Finally, the model simulates spatial and temporal changes in relative 
abundance within a cell based on carrying capacity of a cell, population growth, larval 
dispersal and adult migration (Cheung et al. 2008b, 2011).  
 
Competition  

A new algorithm was developed to describe resource competition between different 
species co-occurring in a cell by comparing the energy (in biomass) that can be 
supported in the cell (estimated with the SS model) with the energy demanded by the 
species predicted to inhabit the given cell (estimated with the NSI-DBEM).  The 
algorithm comprises two stages: (1) an initialization stage where competition 
parameters are estimated; and, (2) a recurrent stage where the competition 
parameters are used to resolve conflicts between energy (biomass) demands and 
biomass that can be supported. 
 
First stage 
The model uses the NSI-DBEM approach to establish an initial distribution for each 
species assuming that predicted habitat suitability is a proxy for the distribution of 
relative abundance of a given species. Thus, multiplying the initial relative biomass by 
the estimated absolute biomass from empirical data, initial species distribution is 
expressed in terms of absolute biomass in each cell. This allows the calculation of 
total biomass of biota by adding predicted distributions across species.  Since biomass 
estimates from survey data are not available for the majority of the species considered 
(Table 1), the initial biomass estimates were approximated by the predicted 
unexploited biomass (B∞) from maximum reported fisheries catch (MC) since 1950 
and an estimate of the intrinsic growth rate (r) of the population (Schaefer 1954): 
 

                     (3) 
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where, MSY is the maximum sustainable yield. Strengths and weaknesses of this 
assumption are documented by Froese et al. (2012). However, it has been considered 
that this determines only a initialization point for the model to differentiate between 
abundant and rare species. Maximum catch was calculated from the algorithm 
documented in Cheung et al. (2008) while estimated r values, based on an empirical 
equation that is dependent on asymptotic length of the species, were obtained from 
FishBase (www.fishbase.org). Although we recognise that this is an approximation 
and not as reliable as estimates of biomass in the sea, we consider that despite some 
significant variability, biomass estimates from maximum catch data and aggregated 
stock assessments (Table 1) are significantly correlated for the species we considered 
(Fig. 1). 
 
The initial absolute biomass estimates, based on habitat suitability in the cells where 
they are distributed (Fig. 2), are used to generate a matrix of species energy 
(biomass) demand. Matrix elements define the proportion of total energy, available to 
a species at each habitat suitability and in each size class. The amount of energy is 
determined by the average proportion of energy that a species gets in cells with the 
same habitat suitability. 
 
Energy demanded (E_D) by a species in a cell is compared with the total biomass or 
energy (E_S) that can be supported in the cell (see Table 2 for a summary of 
abbreviations). E_D is determined by the NSI-DBEM, whereas the E_S is determined 
by the SS model. Thus, the average proportion of energy that a species demands in 
cells of same habitat suitability can be calculated: 
 

               (4) 

 
To convert from biomass (B) distribution to abundance (N) and vice versa, the mean 
body mass (W) at each size class (i) is used:  
 

                             (5) 
 
where, n is the number of size class considered in the model. The initial habitat 
suitability value is converted using a square root data transformation to ensure a 
balanced distribution of the cells across the habitat suitability classes and then 
normalized to a range from 0 to 1 relative to minimum and maximum value of habitat 
suitability for each species. The model then groups habitat suitability into six classes 
(bins) of values: 0 - 0.3, >0.3 - 0.4, >0.4 - 0.5, >0.5 - 0.6, >0.6 - 0.7 and >0.7 - 1. The 
use of discretized bins of habitat suitability, a non-parametric methodology, does not 
require the specification and estimation of particularly distribution functions and is 
considered a more computationally efficient method (Fayyad and Irani 1993, 
Dougherty et al. 1995). However, the effectiveness of the discretization depends on 
the number of intervals or bins, the domain significance of the breakpoints and the 
balance of the number of instances within each interval (Uusitalo 2007; Fernandes et 
al. 2010). The effects of potential error from such discretization is minimized here by 
using a squared root transformation of the predicted habitat suitability, a low number of 
bins and the choice of the bins boundaries. 
 

http://www.fishbase.org/
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Available energy in a size class which is not demanded by the modelled species was 
assigned to a group called ‘other groups’. This group has its own resource allocation 
matrix based on the average habitat suitability of the modelled species. In addition, 
only cells with a minimum number of modelled species are considered to compute the 
‘others group’ matrix, with the minimum species number being the square root of the 
number of species modelled. This formulation allows the inclusion of resource demand 
from species that are not explicitly modelled. 
 
Second stage 
Abundance of each species in each cell was predicted based on the algorithm used by 
the NSI-DBEM (see previous section).The model runs in an annual time-step for 
bottom-dweller (demersal) species and a seasonal (summer and winter) time-steps for 
species in the water-column (pelagic) (Cheung et al. 2008).  The size spectrum is 
assumed to be in equilibrium at the start of the simulation (see Table 3). For each 
species, the energy demands are compared with energy demands of other species co-
occurring in the same cell. If the energy demand by all organisms in the cell exceeds 
the energy available, then the available energy was allocated to each species in 
proportion to their energy demands within the cell. If the energy demanded by all the 
species is lower than the energy available, the surplus energy was allocated according 
to the proportional energy demand of the species present. To represent population 
growth that is limited by factors other than available energy, the rate that energy can 
actually be assimilated by a species is limited by the function: 
 

                                      (6) 

 
Where, E_DSuit denotes the energy demanded in all the cells in each bin of habitat 
suitability. Therefore, the amount of additional energy that can be taken by the species 
is limited by two times the standard deviation (std.dev) of energy that each species 
gets in the initial distribution at each habitat suitability bin. Any energy that is left after 
these allocation is assumed to be used by the Others group.  We examined the 
sensitivity of the model outputs from this assumption by comparing with results from 
an alternative model without this assumption. 
 
Model testing 
The results from the model that includes competition were compared with results from 
the NSI-DBEM and “empirical” time series of abundance data from fish stock 
assessments for the Northeast Atlantic (FAO area 27), as extracted from the RAM 
Legacy Stock Assessment Database (Ricard et al. 2011; 
http://ramlegacy.marinebiodiversity.ca/) and ICES Stock Summary Database 
(http://www.ices.dk). To compare projected changes with observations, both datasets 
are normalized by dividing them by their mean value. While the models were applied 
to a set of 48 fish species, comparison with empirical data were conducted for 24 
species with available data from the above assessments datasets. These species are 
the most abundant and commercially important species in the North Atlantic (Table 1). 
The output of the DBEM models are compared with the “empirical” time series values 
for each species observing the distribution of absolute error (AE): 
 

                                           (7) 

http://ramlegacy.marinebiodiversity.ca/
http://www.ices.dk/
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where, p is the total biomass predicted in a DBEM model in a particular year for a 
species, and x is the total biomass from the assessments. The comparison was done 
for the m years with available assessment data for all the 24 species considered. To 
compare between the performance of SS-DBEM and NSI-DBEM, Percent Reduction 
in Error (PRE) was calculated (Hagle and Glen 1992; Fernandes et al. 2009), but 
weighted by the maximum catch of each species (WPRE): 
 

                                       (8) 

 
where AENSI is the absolute error in the NSI-DBEM model, AESS is the absolute 
error in the SS-DBEM model, k the number of species and MaxCatch the maximum 
catch of the species. 
 
These models were also compared with empirical data in describing latitudinal and 
depth centroid shifts of species in response to climate change (Dulvy et al. 2008; 
Cheung et al. 2011). Distribution centroid (DCt) for each year (t) was calculated as: 
 

                                                                                                   (9) 

 
where, Bi is the predicted relative abundance in cell i, A is the area of the cell, Lat is 
the latitude at the centre of the cell and n is the total number of cells where the 
species was predicted to occur. We calculated the rate of range shift as the slope of a 
fitted linear regression between the distribution centroid of the species and time. We 
expressed latitudinal range shift (LS) as poleward shift in distance from: 
 

                                                                                         (10) 
 
where DS is the distribution shift in degree latitude per year. 
 
The models were run for a time-frame of 35 years, from 1970 to 2004 with 
environmental forcing predicted from two modelling systems: (1) the National 
Oceanographic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamic 
Laboratory Earth System Model (ESM) 2.1(GFDL)  and (2) the European Regional 
Seas Ecosystem Model (ERSEM). GFDL ESM2.1 is a global atmosphere-ocean 
general circulation model (Delworth et al. 2006) coupled to a marine biogeochemistry 
model (TOPAZ; Dunne et al. 2010) which includes major nutrients and three 
phytoplankton functional groups with variable stoichiometry. For the GFDL hindcast 
simulations (Henson et al. 2010 ), air temperature and incoming fluxes of wind stress, 
freshwater, shortwave and longwave radiation are prescribed as boundary conditions 
from the CORE- version 2 reanalysis effort (Large and Yeager 2009). ERSEM is a 
biogeochemical model that uses the functional-groups approach which decouples 
carbon and nutrient dynamics and comprises four phytoplankton and three 
zooplankton functional groups (Blackford et al. 2004).  Data from two different 
configurationsof ERSEM were applied here: on the global scale a hindcast of the 
NEMO-ERSEM model forced with DFS 4.1 reanalysis for the atmosphere (Dunne et 
al. 2010) and on the regional scale a hindcast of the POLCOMS-ERSEM model for the 
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NW-European shelf forced with ERA 40 reanalysis (extended with operational 
ECMWF reanalysis until 2004) for the atmosphere and global ocean reanalysis for the 
open ocean boundaries (more details on the configuration can be found in Holt et al. 
2012, Artioli et al. 2012). The data from this global model was overlapped by the data 
from a regional model of the North Sea area. 
 
Results and discussion 
 
Comparing SS-DBEM with NSI-DBEM 
Predicted biomasses from SS-DBEM were generally lower than those projected from 
NSI-DBEM (Fig. 3). The reason is that a limit on the energy available from primary 
producers plays an important role in limiting species’ biomass in SS-DBEM but not in 
NSI-DBEM, where species’ carrying capacity depends mainly on the habitat suitability 
of the cell. The chosen energy based competition does not model the real species 
interactions. The advantage is easy parameterisation and the disadvantage is that 
interactions are not specified (e.g. no diet matrix). However, a diet matrix is very hard 
to implement and will part from assumptions such that a species will not change its 
diet to an opportunistic strategy. The proposed approach has the advantage that is 
also able to new situations such as new predators invading an area and interacting 
with species for first time. An acceptable balance between abstraction and detail is 
needed to address questions about large-scale redistribution and build scenario of 
what-if kind (Metcalfe et al., 2012).  
 
Outputs from SS-DBEM explain more of the variation in biomass estimated from stock 
assessments (FAO area 27) than those from the NSI-DBEM.  The error weighted by 
maximum catch predicted across species from SS-DBEM against empirical data is 
3.7% lower than those predicted from NSI-DBEM using GFDL environmental forcing 
data and 0.6% lower using ERSEM data. GFDL might be more accurate (Fig. 4) for 
the time period considered since the model run was forced by re-analysis data such as 
surface temperature and wind fields, which is not the case for ERSEM. However, the 
differences in mean absolute error are not significant and might not hold when the 
models are used for forecasting. Finally, a lower variance in the absolute error in SS-
DBEM with respect to NSI-DBEM model (Fig. 4) is indicative of a higher precision of 
simulated biomass from SS-DBEM (Taylor 1999). Therefore, it is encouraging that the 
GFDL data shows superior behaviour since it means that the models will improve with 
better data provided. In addition, the fact that the simulations with ERSEM show also a 
good performance is encouraging since when projecting to the future, there is no 
possibility of doing any re-analysis correction. All this supports also the assumption 
that with better primary production estimates available the proposed modelling 
approach can potentially be a great advance over models without any kind species 
interactions mechanism. 
 
There are several species that show the largest weighted percent reduction in error 
between predictions and stock assessment data when NSI-DBEM and SS-DBEM are 
compared using both Earth System Models. These are Atlantic herring (Clupea 
harengus), Atlantic cod (Gadus morhua), Haddock (Melanogrammus aeglefinus), 
Atlantic mackerel (Scomber scombrus), European hake (Merluccius merluccius) and 
Greenland halibut (Reinhardtius hippoglossoides).  Some other species show 
responses that depend on the specific forcing model used. For example, when DBEMs 
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were driven by ERSEM outputs, error between observed and predicted biomass for 
two species, European pilchard (Sardina pilchardus) and Common sole (Solea solea), 
is lower from SS-DBEM than from NSI-DBEM. Conversely, error from SS-DBEM is 
higher than from NSI-DBEM when the models were driven by outputs from GFDL. 
Outputs from GFDL forcing have lower error than outputs from ERSEM forcing for 
several species, including the bottom-dwelling saithe (Pollachius virens), ocean perch 
(Sebastes marinus), tusk (Brosme brosme) and fourspotted megrim (Lepidorhombus 
boscii) and the pelagic European sprat (Sprattus sprattus), European anchovy 
(Engraulis encrasicolus), capelin (Mallotus villosus) and albacore (Thunnus alalunga). 
If the errors are not weighted by the maximum catch of the species, then these results 
are not consistent between the two Earth System Models.  
 
Distribution shift 
Both NSI-DBEM and SS-DBEM projected pole ward latitudinal shift of species 
distributions (Fig. 5), and the projected shifts are generally consistent between 
simulations forced by the two sets of Earth System Model outputs (Table 4).  In 
addition, the projected shift of pelagic species by the model with interactions is 
consistently lower than if no interactions are considered (Table 4). However, to the 
best of our knowledge there is still no study based on observational data that confirms 
or denies this result.  With ERSEM forcing, the median projected rates of pole ward 
shift are 63.5 km and 54.9 km over 35 years, or 18.1 and 15.7 km decade-1, from NSI-
DBEM and SS-DBEM respectively. All sets of simulations show a higher rate of range 
shift for pelagic species than bottom dwelling species. A reduction in the expected 
geographical shift of particular populations as a result of ecological interactions is 
consistent with the perception of compensatory ecological processes (Frank et al. 
2011, Nature 477) In terms of depth shift, in general, the results show a shift to 
shallower waters at a rate ranging from 0.4 to 8.7 m decade-1. The shift in depth is 
also dependent on the spatial domain considered. For example, for demersal species 
in FAO Area 27, outputs from SS-DBEM driven by ERSEM data project a shift to 
deeper waters of 1.3 m decade-1. However, when we consider North Sea only, the 
projected shift to deeper waters is higher, at 5.7 m decade-1.  
 
The projected rates of shifts from the SS-DBEM are consistent with observations. 
Specifically, Perry et al. (2005) projected a mean rate of latitudinal shift of 22 km 
decade-1 from 1980 to 2004 in the North Sea for six fish species, including bib 
(Trisopterus luscus), blue whiting (Micromesistius poutassou), lesser weaver 
(Echiichthys vipera), Norway pout (Trisopterus esmarkii), scaldfish (Arnoglossus 
laterna) and witch (Glyptocephalus cynoglossus). Comparable rates of shift (between 
18.5 and 18.8 km decade-1) are projected here for the four species (bib, blue whiting, 
Norway pout and Witch). Also, Dulvy et al. (2008) estimated that bottom dwelling 
species were moving into deeper waters at an average rate of 3.1 m decade-1 from 
1980 to 2004 (19 species out of 28 species are common between this study and Dulvy 
et al. 2008), a little slower that our prediction of 5.7m. These direct comparisons 
between predicted and observed shifts need to be interpreted with caution because of 
the differences in the species included and spatial domain. In addition, these are 
projections are of full species distribution, not stocks. This is because the data about 
species life history needed to produce such projections is available at species level 
and not at the level of specific stocks. Therefore, the trend or shift of certain species 
has not to be consistent across all the stocks (Petitgas et al., 2012). 
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Maximum catch 
The predicted maximum catch by the both DBEM models (SS and NSI) follows a 
similar trend to the empirical total catches for the 1970 to 2004 time period in the ICES 
areas (Fig. 1). The empirical catch data is the result of aggregating all the catches 
reported in ICES areas as collected in the Eurostat/ICES database on catch statistics - 
ICES 2011, Copenhagen (http://www.ices.dk). The predicted maximum catch is based 
on the aggregation of the potential catch of the 48 modelled species in ICES areas. 
This can mean that despite inaccuracies in some species, the models are able to 
reproduce observed fish productivity in the North East Atlantic. 
 
 
Model uncertainty 
Earth System Models are known to systematically project lower primary production 
over continental shelves, a consequence of their limited spatial resolution. This effect 
cannot be corrected directly and as primary production eventually determines fish 
biomass potential, overall biomass tends to be lower that time series of biomass 
based on surveys. Therefore, the output of the model has to be considered in terms of 
relative change over time and space.  Efforts to understand and produce for a more 
accurate primary production projections are being made (Holt et al. 2012;  Krause-
Jensen et al. 2012). Meanwhile, available projections can be used to study the 
interactions between species and evaluate how species interactions may affect 
changes in distribution. While most species are driven by temperature, predicted 
biomass of Atlantic cod (Gadus morhua) was strongly driven by primary production in 
SS-DBEM (Fig. 6). Particularly, predicted cod distribution shift was determined 
primarily by the cells with highest primary production. Therefore, it is expected that 
with improvement of primary production projections, the results of the model will be 
closer to the empirical time series for cod. 
 
A main assumption of size-spectrum component of the model is that size spectrum 
function for a given community is considered to be a linear relationship between log-
abundance and log-size classes. Such assumption is made mainly for computational 
performance. Iin reality, such assumption may be violated as species shift their 
distribution or when primary productivity changes, resulting in non-linearity in the size 
spectrum. However, our model simulations show that such violation of assumption is 
rare (in less than 5% of cells), except for a few species (violation in 80 – 100% of the 
cells) including Whiting (Merlangius merlangus), Blue whiting (Micromesistius 
poutassou), Atlantic cod (Gadus morhua), Norway pout (Trisopterus esmarkii), 
European plaice (Pleuronectes platessus), Saithe (Pollachius virens) and Atlantic 
horse mackerel (Trachurus trachurus). However, in all the species the break or drop is 
consistently a small percentage of the abundance in the cell (an average of 0.034 % of 
abundance decrease), indicating that the assumption has limited effect on the 
projections.  
 
The use of the new model with species interactions improves the forecasting power 
over previous versions of the model with benefits in terms of improving total catch 
potential estimation. There is consensus between the results using two different Earth 
System models in term of which species improve their performance and latitudinal 
shift, where the model with interactions predicts a slower latitudinal shift of pelagic 

http://www.ices.dk/
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species in relation to the model without interactions.  The environment forcing 
generated from different earth system models are more important in explaining the 
model performance for some species. Moreover, we considered the trade-offs in 
model complexity (Domingos 1999).We applied theoretical mechanism and empirical 
data to model trophic interactions. Although the modelling approach does not 
incorporated the full range of complexity of interactions between species in marine 
food-webs, the ease of parameterization allows the model to be applicable to large 
number of species in most part of the global ocean to develop scenarios of large-scale 
shift in species distribution and fisheries catch (Cheung et al. 2010; Metcalfe et al. 
2012). A multi-model approach with projections from model with different complexity, 
such as the analysis in this study, would facilitate the exploration of model 
uncertainties in developing scenarios of biological responses to climate change and 
their socio-economic implications (Jones et al. 2012). Therefore, the proposed model 
is an important advance in global modelling based on strong theory and contrasted 
with empirical data. This is important in terms of including ecological understanding 
into climate change projections of species distribution and abundance. 
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Tables 

Table 1. List of modelled fish species. Species with biomass assessment are marked in the last column. In the last column, the list 
of stocks that have been aggregated for the species from RAM database (STOCKID) are listed in capital letters. For some stocks 
not recorded in the RAM database, ICES Stock Summary Database was used (listed with no-capital letters). 

Common name Scientific name Type Stocks 

Albacore Thunnus alalunga Pelagic ALBANATL. 
American plaice / long 
rough dab 

Hippoglossoides 
platessoides 

Demersal  

Angler Lophius piscatorius Demersal  

Atlantic cod Gadus morhua Demersal 
CODNEAR, CODBA2224, CODBA2532, CODVIa, CODIS, 
CODICE, CODNS and CODKAT. 

Atlantic herring Clupea harengus Pelagic 

HERRIsum, HERRNS, HERRVIa, ERRVIaVIIbc, 
HERR2224IIIa, HERR2532, HERR30, HERRRIGA, 
HERRNIRS, HERRNWATLC, HERR4VWX, HERR4RFA, 
HERR4RSP, HERR4TFA, HERR4TSP, HERR31, her-vian, 
her-noss and her-vasu 

Atlantic horse mackerel Trachurus trachurus Pelagic hom-west. 
Atlantic mackerel Scomber scombrus Pelagic MACKNEICES. 
Baltic sprat Sprattus sprattus Pelagic SPRAT22-32. 

Blue whiting 
Micromesistius 
poutassou 

Pelagic whb-comb. 

Boarfish Capros aper Demersal  
Capelin Mallotus villosus Pelagic CAPEICE and CAPENOR. 

Common sole Solea solea Demersal 
SOLENS, SOLEVIId, SOLEIS, SOLEIIIa, SOLEVIIe, 
SOLECS, and SOLEVIII. 

Cuckoo ray Leucoraja naevus Demersal  
Dab Limanda limanda Demersal  
European anchovy Engraulis encrasicolus Pelagic ANCHOBAYB. 
European hake Merluccius merluccius Demersal HAKESOTH and HAKENRTN. 
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European pilchard Sardina pilchardus Pelagic sar-soth. 

European plaice Pleuronectes platessus Demersal 
PLAIC7d, PLAICIIIa, PLAICNS, PLAICIS, PLAICECHW and 
PLAICCELT. 

European sprat Sprattus sprattus Pelagic SPRATNS. 
Flounder Platichthys flesus Demersal  
Fourbeard rockling Enchelyopus cimbrius Demersal  
Fourspotted megrim Lepidorhombus boscii Demersal mgb-8c9a. 

Greenland halibut 
Reinhardtius 
hippoglossoides 

Demersal GHALNEAR, GHALBSAI and GHAL23KLMNO. 

Haddock 
Melanogrammus 
aeglefinus 

Demersal 
HAD4X5Y, HAD5Y, HAD5Zejm, HADICE, HADNEAR, 
HADFAPL, HADNS-IIIa, HADVIa, HADVIIb-k, HADROCK 
and HADGB. 

John dory Zeus faber Demersal  
Lemon sole Microstomus kitt Demersal  
Ling Molva molva Demersal  

Megrim 
Lepidorhombus 
whiffiagonis 

Demersal mgw-8c9a. 

Northern bluefin tuna Thunnus thynnus Pelagic ATBTUNAEATL and ATBTUNAWATL. 
Norway pout Trisopterus esmarkii Demersal nop-34. 
Golden Redfish Sebastes norvegicus Demersal GOLDREDNEAR. 
Pearlsides Maurolicus muelleri Pelagic  
Piked dogfish/ Spurdog Squalus acanthias Demersal  
Pollack Pollachius pollachius Demersal  
Poor cod Trisopterus minutus Demersal  
Pouting / Bib Trisopterus luscus Demersal  
Red bandfish Cepola macrophthalma Demersal  

Saithe / Pollock Pollachius virens Demersal 
POLL5YZ, POLLNEAR, POLLFAPL, POLL4X5YZ and 
POLLNS-VI-IIIa. 

Smallspotted catshark Scyliorhinus canicula Demersal  
Splendid alfonsino Beryx splendens Demersal  
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Spotted ray Raja montagui Demersal  
Striped red mullet Mullus surmuletus Demersal  
Thickback sole Microchirus variegatus Demersal  
Thornback ray Raja clavata Demersal  
Tub gurnard Chelidonichthys lucerna Demersal  
Tusk/ Torsk / Cusk Brosme brosme Demersal CUSK4X. 
Whiting Merlangius merlangus Demersal WHITNS-VIId-IIIa, WHITVIa and WHITVIIek. 

Witch 
Glyptocephalus 
cynoglossus 

Demersal  

 

 

Table 2. Summary of abbreviations. 

Abbreviation Description Details 

I Index of cell From 0 to 250200 

Spp Index of species From 0 to 16 species 

Suit Index of the habitat suitability bin Between 0 and 1, 4 bins 

W Index of the size spectrum 21 log2 classes from 2-1 to 219 

 
Proportion resources at matrix of energy 
demand 

See Eq. 8  

 
Actual proportion of resources by 
competition 

See Table 2 

E_Ssize,i Total biomass supported in a cell 
Calculated from Primary 
production 

 Biomass by competition    
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 Biomass demanded Calculated at each yearly shift 

TotalRes W, i Total proportion of resources demanded    

 Proportion of resources by opportunity See Eq. 10 
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Table 3. Pseudocode of the competition algorithm which resolves conflicts between the 

energy demanded and supported. 

Competition algorithm pseudocode 

1:  Calculate   =   

2:     >    

3:        Then    =   / E_SW,i 

5:   If  TotalRes W, i < 1 Then     from matrix of energy demand 

6:   If  TotalRes W, i < 1 Then  =   ∙  

7:   If  TotalRes W, i > 1 Then   Normalize:   TotalRes W, i 

8:   If      >     Then    =   

9:    Adjust biomass, abundance and size distributions base on    

 
 
Table 4. Average latitudinal shift in different simulations measured in km decade-1. NSI 
corresponds to simulations where the model does not incorporate species interactions 
through the size-spectrum, whereas SS denotes the use of the species interactions 
algorithm. GFDL and ERSEM correspond to the use of data from two different Earth 
System Models.    

 Latitudinal Shift (km 
decade-1) 

Projection All 
species 

Demersal Pelagic 

NSI-DBEM 
GFDL 

16.7 14.1 26.0 

SS-DBEM 
GFDL 

13.7 12.6 18.4 

NSI-DBEM 
ERSEM 

18.1 15.2 28.2 

SS-DBEM 
ERSEM 

15.7 15.3 16.9 
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Figures: 

 
Fig. 1: Relationship between the maximum assessed biomass and the carrying capacity of 
fish population (B∞) for 22 species in the 27 FAO area (after removing extreme values, the 
lowest and highest B∞). 
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Fig. 2: Diagram of the framework to calculate the matrix of energy demand at each size 
class for each species. 
 

 
Fig. 3: Species size spectrum distribution in relation to the biomass supported in a single 
coastal cell (½ degree x ½ degree) used as an example. 
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Fig. 4: Distribution of absolute error of predicted biomass for SS-DBEM and NSI-DBEM is 
reported in relation to the biomass estimated from stock assessments for the 1991 to 2003 
period in the Northeast Atlantic (FAO Area 27). The comparison is presented for both Earth 
System models ERSEM and GFDL in the left and in the right respectively showing in the 
legend mean and standard deviation of the absolute error. A narrower distribution of error 
(lower standard deviation) in SS-DBEM is indicative of a higher precision. 
 
 

  
Fig. 5: Predicted latitudinal shift of distribution centroids of 49 species of fishes from 1971 to 
2004 using ERSEM climatic dataset for the NSI-DBEM and SS-DBEM. The thick dark bar 
represents the median shift of all the species in a year, the lower and upper boundaries of 
the box represent the 25% and 75% quartiles, respectively. Positive value indicates 
poleward shift relative to species distribution in 1971.  
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Fig. 6: Predicted changes in maximum catch compared with empirical catch data. Time-
series has been normalized between 0 and 1 in order to compare inter-annual variability. 
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